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Abstract. These are the notes of a reading seminar on formal category theory
we are running at Masaryk University. It is not live-TEXed, and yet it is full
of misprints, references to nameless cults, blood stains, blasphemy.

1. Ouverture: what is formal category theory

The language of category theory is built upon a certain number of fundamen-
tal notions: among these we find the universal characterization of co/limits, the
definition of adjunction, (pointwise) Kan extension, and the theory of monads.

It is possible to ‘axiomatize’ these definitions, pretending that they refer to the
1- and 2-cells of a generic 2-category other than Cat. This conceptualization is one
of the pillars upon which category theory is done: in some sense, category theory
arises when the way in which abstract patterns interact becomes itself an object of
study, and when it is generalized to several different contexts. In a few words, the
aim of formal category theory is to provide a framework in which this process can
be outlined mathematically. Quoting the introduction of [Gra74], that is one of the
pillars on which the subject is founded,

The purpose of category theory is to try to describe certain general
aspects of the structure of mathematics. Since category theory
is also part of mathematics, this categorical type of description
should apply to it as well as to other parts of mathematics. [. . .]

The basic idea is that the category of small categories, Cat, is a 2-category with
properties in the same way Set is a category with properties. The aim of formal
category theory is to outline these properties, and the assumptions needed to ensure
that a certain 2-category behaves like Cat in some or some other respects.

Unfortunately, being too naïve when performing this process doesn’t always give
the ‘right’ answer (by which we mean that it doesn’t always build an object with
the right universal property), or at least it doesn’t give the right answer in the same
straightforward way in which some categories of algebraic structures can be defined
starting from the category of Set.

This is ultimately due to the fact that, when moving to the setting ofV-enriched
categories (which is the adjacent step of abstraction from Cat = Set-Cat) the
theory ‘behaves differently’ in various ways, and some of these differences prevent
V-categories to be as expressive as one would have liked it to be (a paradigmatic
example of this minor expressivity is the lack of a Grothendieck construction for
generic V-presheaves: seeing how the Grothendieck construction, a certain rule
to relate ‘presheaves on B’ and ‘fibrations over B’, ultimately pertains to formal
category theory has been one of the purposes of the early literature on the subject,
see [Str74, SW78, Str80]).

The major problem is that the 2-category V-Cat often doesn’t give enough
information about the V-valued hom-functors in a 2-category. Formal category
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theory can be thought as a way to encode the same amount of information in
various other ways: even though it is always possible to do some constructions by
mimicking definitions from Cat (adjunctions and adjoint equivalences, extensions
by universal 2-cells, etc.), things get a little hairy when we want to provide the
theory with an analogue of a very useful and basic result as the Yoneda lemma.

In the 2-category Cat, we can use a lax limit construction to “revert” set-valued
functors on an object B into arrows “over” B (we basically glue together a bunch
of fibers

∐
bEb projecting onto B, in the same manner we build the étale space of

a presheaf F : Bop → Set); in the 2-category Cat the comma object of b : 1 → B
to 1B : B → B together with its projection b/B → B is a good stand in for the
covariant functor represented by B (more generally, discrete left fibrations over B
stand in for general functors B → Set).

In the 2-category V-Cat, we care about V-valued V-functors and we would like
to do the same construction there. But for an object b in a V-enriched category
B, the comma b/B is more naturally an internal category (whose object of objects
is
∐
x∈B B(b, x)) rather than an enriched one (whose objects are morphisms b→ x

in the underlying category of B). We have to ensure that the codomain projection
V-functor b/B → B from the enriched version of the comma has a fibration-like
properties, and this leaves us with the fundamental problem of formal category
theory: which additional structure on a 2-category K allows to recognize arrows
of K playing the same rôle of discrete fibrations in Cat, thus providing with a
meaningful notion of Yoneda lemma internal to K ?

It has been in the middle age of southern-emisphere category theory that a
certain number of ways to describe such extra structures have been invented: the
aim of this first chapters is to give a brief account about three (not unrelated) such
attempts. At the moment of writing we count

1.1. Street andWalters’ “Yoneda structures”. The definition of Yoneda struc-
ture given by Street revolves around the possibility to give a formal counterpart
of the Yoneda embedding よ: A → PA with its universal property. This axioma-
tization is based on the centrality of the Yoneda lemma ‘internal’ to a 2-category
K , that has been defined in a fairly heavy-handed way in Street’s previous [Str74].
One of the main achievements of the subsequent [SW78] is to obtain an elegant and
concise axiomatization stemming almost completely from universal properties.

1.2. Street’s “fibrational cosmoi”. A particular case of Yoneda structures, where
you ask the pseudo-functor P : K coop → K characterizing a Yoneda structure to
be a right 2-adjoint.

1.3. Wood’s “proarrow equipments”. A different and more powerful perspec-
tive, where you embed K into a second 2-category K ? with a 2-functor ( )∗ : K →
K ?, which is the identity on objects and mimicks the behaviour of the embedding
Cat→ Prof, asking that

• the 2-functor ( )∗ is locally fully faithful;
• for each 1-cell f : A→ B in K , every f∗ admits a right adjoint in K ?.

(See [Béner, Lor15] for a thorough account of the theory of profunctors; since the
request that ( )∗ is the identity on objects is a bit of an evil one, the paper
[Woo85] gives the 2-functors satisfying only the other two axioms the name of
pro-equipments).

2. Yoneda structures on 2-categories

2.1. Lift, extension, contraction, expansion.
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Definition 2.1 : Let B f−→ A
g←− C a cospan of 1-cells in K . A left lifting of f

along g consists of a pair 〈liftgf, η〉 (often denoted simply as liftgf) initial among
the commutative triangles like the one below:

C

g

��

B
f

//

liftgf
::

A
⇒η

liftgf → h
f → gh

In other words, composition with η : f ⇒ g ◦ liftgf determines a bijection γ̄ 7→
(g ∗ γ̄) ◦ η between 2-cells liftgf

γ̄−→ h and 2-cells f → gh.

Remark 2.2 :One can define right liftings similarly, reversing only the direction
of the 2-cell in the diagram above, and consequently the universal property, and
left and right extensions reversing, respectively, only the directions of 1-cells or the
direction of both 1- and 2-cells in the diagram above. It is then clear that left
extensions in K are left liftings in K op, right liftings in K are left liftings in K co,
and right extensions are left liftings in K coop.

The situation is conveniently depicted in the following array of universal objects:

A ⇒
η

g

��

f
// B

C

Langf

::

Langf → h
f → hg

Liftgf → h
f → gh C

g

��

B
f

//

Liftgf

::

A
⇒η

A

⇒ε
g

��

f
// B

C

Rangf

::

hg → f
h → Rangf

h → Riftgf
gH → f C

g

��

B
f

//

Riftgf

::

A

⇒
ε

Definition 2.3 :There is an obvious notion of preservation of a left lifting liftgf
(write it down abstracting a little bit from the definition of preservation of a
co/limit) under the composition with a 1-cell u; we say that a left lifting is ab-
solute if it is preserved by every u. Of course similar definitions apply to right
liftings and left or right extensions.

2.1.1. Three standard results on lifts and extensions. Recall that we call
f : X � Y : g

a pair of adjoint 1-cells if we are given a 2-cell ε : fg ⇒ 1 and η : 1⇒ gf satisfying
the zig-zag identities g ∗ε◦η ∗g = 1g and ε∗f ◦f ∗η = 1f . We denote this situation
in the compact form f ε

η
g : X � Y .

Lemma 2.4 [The most intrinsic characterization of adjointness you
could ever think of]:The following conditions are equivalent:

(1) f is the left lifting of the identity 1A along g : B → A and this lifting is
preserved by g : B → A.

(2) f is the absolute left lifting of the identity 1A along g : B → A;
(3) f ε

η
g : A� B;

Proof. It is obvious that (2)⇒ (1). We then prove that (1)⇒ (3) and (3)⇒ (2).
• The trick is to find ε : fg ⇒ 1 satisfying the zig-zag identities: since
〈fg, η ∗ g〉 is the left lifting liftgg, there is a unique such ε such that the
equation g ∗ ε ◦ η ∗ g = 1g holds in the diagram below:
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B

B A

g

g

1

fg

ε

η∗g

This is one of the zig-zag identities testifying that f ε
η
g. The other zig-zag

identity can be obtained from the chain of equalities

1a
η
// gf

gf∗η
// gfgf

g∗ε∗f
// gf

1a
η
// gf

η∗gf
// gfgf

g∗ε∗f
// gf

1a
η
// gf gf

but now ε ∗ f ◦ f ∗ η = 1a by uniqueness ( ◦ η induces a bijection
Nat(gf, gf) ∼= Nat(1, gf)). This shows that f ε

η
g.

• Assuming that f ε
η
g, we must show that 〈f, η〉 is an absolute extension. It

is an extension, since given a functor h : X → A, and ending the bijections
A(a, gha) ∼= B(fa, ha) we get that

Nat(1, gh) ∼= Nat(f, h);
written explicitly, the bijection sends α : 1 ⇒ gh into its mate α̃ = ε ∗ h ◦
F ∗ α : f ⇒ fgh ⇒ h, and the uniqueness is given by the bijectivity of
α 7→ α̃. A similar argument shows that this lifting is absolute, as

Nat(h, gk) ∼=
∫
x

A(hx, gkx)

∼=
∫
x

B(fhx, kx)

∼= Nat(fh, k);
this shows that 〈fh, η ∗ h〉 is 〈liftgh, η ∗ h〉. �

Lemma 2.5 [A pasting lemma for left extensions]:Given the diagram of
natural transformations between functors

A B C

D

f

h
η

k

g

n

β

assume that the external triangle, plus the left triangle are left extensions, i.e. there
are 2-cells η : h→ kf such that k = Lanfh and β : h→ ngf such that n = Langfh.
Then the right triangle is a left extension, meaning that

• There is a unique β̂ : k → ng such that β = β̂ ∗ f ◦ η;
• Such β̂ makes the pair (n, β̂) a left extension of k along g.

Proof. Exercise. Use the universal properties you already have to supply the addi-
tional one. (Additional question: is it still true for absolute extensions?) �

Definition 2.6 [relative adjunction]: Let f : X → Y , j : X → C, and g : Y →
C be three functors; we say that f is a j-relative left adjoint to g, and we write
f

η[j]
g, if there is a natural isomorphism

Y (fx, y) ∼= X(jx, gy).
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Remark 2.7 : It is a matter of checking universal properties to prove that f
η[j]

g iff g exhibits riftf j. This gives a formal characterization of relative adjoints
generalizing Lemma 2.4.

It is of course possible to define a relative right adjoint: given C g−→ X
f−→ Y and

j : C → Y, we write that f [j]ε g if Y (fx, jc) ∼= X(x, gc). Then, f [j]ε g if and
only if f ∼= liftgj

Remark 2.8 :The definition fo relative adjunction is eminently asymmetric: the
most important difference is that the two functors do not determine each other
any more, as it is only true that if f [j]ε g then g determines f uniquely, and not
viceversa (immediate in view of the formal characterization above).

Apart from this, and keeping in mind this inevitable asymmetry, pretty much
all the theory of adjoint functors can be relativized:

• Relative adjunctions have units or counits, depending on whether they are
left or right;
• relative adjunctions generate relative monads in the sense of [];
• if f

η[j]
g, and j η̃

jr then f
jr∗η′[jrj]

jrg, with η′ a pasting of η, η̃.

2.2. Yoneda structures: presenting the axioms. The idea in this section is
to present the bare axioms and then show why these are sensible abstractions of
‘trivially true’ properties of the 2-category Cat. The analogy here is with the
motivation for Giraud axioms characterizing a Grothendieck topos, or with the
categorical properties of Set that characterize (a weak version of) it in ETCS.
Then, we discuss the consequences of the axiom we single out showing the most we
can in a purely formal way.

We establish the following notation:
• K is a 2-category, fixed once and for all;
• Adm(A,B) ⊆ K (A,B) is a full subcategory of “admissible” 1-cells, which
is moreover a right ideal, meaning that the composition map restricted to
admissible 1-cells gives

Adm(A,B)×K (X,A)→ Adm(X,B).

We call admissible an object A such that 1A ∈ Adm(A,A); notice that this
entails that every 1-cell with admissible codomain is itself admissible.
• we assume that the following structure can be found on K :

(1) for each admissible object A ∈ K we can find an admissible 1-cell
よA : A→ PA called a Yoneda arrow;

(2) for each f : A → B admissible 1-cell with admissible domain, we can
find a 2-cell

A

f

��
}� χf

よA

  

B
B(f,1)

// PA

The pair 〈B(f, 1), χf 〉 exhibits lanfよA.

Axiom 1



6 IVAN DI LIBERTI, SIMON HENRY, MIKE LIEBERMANN, FOSCO LOREGIAN

The validity of this axiom in Cat justifies the notation: indeed, in Cat the functor
B(f, 1) amounts precisely to the functor λb.λa.B(fa, b). Of course, a functor is
admissible if it has small domain, and PA is the category [Aop,Set] of presheaves
on A.

The proof that B(f, 1) ∼= lanfよA, here and elsewhere, will be the result of a
nifty coend-juggling: we have that

lanfよA(b) ∼=
∫ a

B(fa, b) ·よA(a)

∼=
∫ a

B(Fa, b)×A( , a)

∼= B(f , b).
Axiom 1 entails that the correspondence B(f, 1) is, in a suitable sense, functorial,
as a map

Adm(A,B)op ×K (X,B) // K (X,PA)
Indeed, given a 2-cell α : f ′ ⇒ f between admissible 1-cells in K , there is a unique
ᾱ : B(f, 1)⇒ B(f ′, 1) such that the diagram

A
⇒
χf

f

��

よA // PA

B

MM

B(f ′,1)
�"
c

B(f,1)
>>

=

A

⇒
χf

よA //

f ′

��

f

��

ks
α

PA

B
B(f ′,1)

MM

commutes for a single 2-cell induced by the universal property of lanfよA, and such
2-cell can quite rightly be called B(α, 1) (notice that the pasting B(f ′, 1) ∗ α ◦ χf ′

of the right square exists only if α : f ′ ⇒ f , so λα.B(α, 1) must be contravariant
whatever its definition).

Instead, given a 2-cell X
b
&&

b′
88�� β B , we define

X

B(f,b)
))

B(f ′,b′)
55��B(α,β) PA = X

b
((

b′

66�� β B

B(f,1)
))

B(f ′,1)
55�� B(α,1)PA

The pair 〈f, χf 〉 exhibits liftB(f,1)よA.

Axiom 2

The validity of this axiom in Cat is again a game of coend calculus: if we call
Nf = lanfよA = B(f, 1) for short, we have liftNf

a Nf,∗, where Nf,∗ : g 7→ Nf ◦ g
is the ‘direct image’ functor; then we have

Nat
(
よA, Nf ◦ g

) ∼= ∫
a′

[Aop,Set]
(
よAa

′, Nf ◦ g(a′)
)

∼=
∫
a′

[Aop,Set]
(
よAa

′, B(f , ga′)
)

∼=
∫
a′
B(fa′, ga′)

∼= Nat(f, g)
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Given a pair of composable 1-cells A f−→ B
g−→ C, the pasting of 2-cells

A PA

B PB

C

f

よA

よB

g

Pf

C(g,1)

χよB f

χg

exhibits langfよA = C(gf, 1), and the pair 〈1PA, 1よA
〉 exhibits lanよA

よA.

Axiom 3

The hidden meaning of this axiom is that P is a pseudofunctor K coop → K .
Let’s make this evident: given a pair of composable the universal property of

χgf entails that there is a unique 2-cell θgf filling the diagram

A PA

B PB

C PC

θgf

よA

f

g

Pf

よC

χgf

Pg

Axiom 3 is equivalent to the request that this arrow is invertible (exercise: draw
the right diagram), and this yields that the above diagram has the same universal
property of

A

⇒

よA //

gf

��

PA

C
よC

// PC

P(gf)

OO

which in turn entails that there is a unique, and invertible, 2-cell P(gf)⇒ Pf ◦Pg.
This is of course the first part of the structure of pseudofunctor on P; the remaining
structure is given by the request that 〈1PA, 1よA

〉 exhibits lanよA
よA.

Remark 2.9 :As this might appear quite enigmatic, let’s recall that we call dense
a 1-cell k with the property that lankk ∼= 1; this allows us to rephrase the second
part of axiom 3 saying that ‘the Yoneda embedding is dense’. This is in fact a
characterizing property, as the Yoneda lemma is essentially a statement about the
inclusion A→ PA being able to “generate all PA under colimits”. As the universal
property of P(1A), defined above, entails that there is a unique 2-cell ιA : P(1A)⇒
1PA, axiom 3 is equivalent to the request that ιA is invertible (and natural in A).
This renders P a pseudo-functor, as claimed above.

All these remarks are of course trivial in Cat, since the functoriality of the
correspondence A 7→ Â can be proved directly. Nevertheless, axiom 3 is still telling
us something about a ‘reduction rule’ for composition of Kan extensions: indeed,
it is possible to prove that (in the same notation of axiom 3)

θgf : langfよA ∼= lanよBfよA ◦ langよB
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There is an additional axiom:

Let B

B(f,1)
((

g

77�� σ PA be a 2-cell; if it has the property that the pasting

A ⇒
よA //

f

��

PA

B

== OO

g
�"
σ

exhibits liftgよA, then σ is invertible.

Axiom 4

It must be noted that this axiom is mainly useful to make some statements and
proofs look better: there are reasons not to include it in the definition of a bare
Yoneda structure; it can be proved that 1, 2, 4⇒ 3 so that we can call nice Yoneda
structures those that satisfy 1, 2, and 4.

We now concentrate on a few examples that make evident how category theory
can be re-enacted in a 2-category with a Yoneda structure. In a nice Yoneda
structure, we have a nicer characterization of adjoints and a more intuitive analogue
of fully faithful 1-cells:

• If axiom 4 holds, then we recover the characterization of relative adjoints
below (see 2.10; in general, only one implication holds) in terms of left
liftings: given 1-cells f : A → B, g : B → C, j : A → C we have f ∼= liftgj
if and only if f

η[j]
g, i.e. if and only if B(f, 1) ∼= C(j, g).

• if axiom 4 holds, then a 1-cell f is fully faithful if and only if the functor
K (X, f) is fully faithful for each X, naturally in X.

2.3. Yoneda structures: theorems. A great deal of category theory can be
developed in a category K endowed with a Yoneda structure. We collect here a few
results coming from [SW78].

Theorem 2.10 [on relative adjoints]: Suppose j : A→ C, f : A→ B, g : B →
C are 1-cells in K forming a relative adjunction f

η[j]
g, and A, f, j are admissible.

Then the equality of 2-cells

A

⇒

χff

��

よA

��

B

B(f,1)
**

C(j,1)◦g

44�� π PA

= ⇒
η

A

j

��

f

��

よA

��

⇒
χj

B
g
// C

C(j,1)
// PA

holds since the left 2-cell defines aよA ⇒ C(j, g)◦f , that (by the universal property
of χf ) must be of the form (π ∗ f) ◦ χf for a unique π : B(f, 1) ⇒ C(j, g). This
determines a bijection

π : B(f, 1)⇒ C(j, t)
η : j ⇒ gf

If π is invertible then the corresponding η exhibits liftgj.

Theorem 2.11 [on adjoints]:Take f : A� B : g such that A, f are admissible.
Given a 2-cell η : 1 → gf , the universal property of よA ∗ η induces a bijection
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between these η’s and 2-cells π : B(f, 1)⇒ A(1, u):

A

⇒
よ∗η

よA //

f

��

PA

B
A(1,u)

MM

=

A

π
⇒

よA //

f

��

PA

B
A(1,u)

MM

B(f,1)

>>

Then η is a unit of an adjunction f
η
g if and only if π is invertible. Moreover,

if f η
g then for any X ∈ K , and a : X → A, b : X → B 1-cells, wit X, a, f ◦ a

admissible we have the “pointset” characterization of adjoints A(a, gb) ∼= B(fa, b).

Definition 2.12 [weighted colimit in formal category theory]:Given ad-
missible A, f : A → B and M, j : M → PA we define a j-indexed colimit (or
j-weighted colimit) for f , and write j ⊗ f : M → B for a j-relative left adjoint of
B(f, 1). This means that we can write a “tensor-hom”-like adjunction

B(j ⊗ f, 1) ∼= PA(j, B(f, 1))

Remark 2.13 :Notice that Thm. 2.10 above characterizes j ⊗ f as an absolute
left lifting of j along B(f, 1); the converse is in general not true (it requires axiom
4), and then this left extension deserves the name of weak j-indexed colimit.

In view of the above remark, it is obvious what does it mean for a 1-cell h to
preserve a j-indexed colimit j ⊗ f . We have the following

Theorem 2.14 :A left adjoint 1-cell l : A → B preserves all (weak) j-indexed
colimits that exist in K and can be composed with l.

Proof. The proof is notationally tautological (and shows the power of endowing a
2-category with a Yoneda structure) in view of the definition for the left extension
X(u, 1) and the composition X(1, u) = よXu: assume l η

r is an adjunction with
l : B → X, and that the diagram

X
j⊗f

//

j

��

B

B(f,1)rrPA

=Eη

exhibiting j ⊗ f is given; then

PA(j,X(lf, 1)) ∼= PA(j, B(f, r))
= PA(j, B(f, 1)) ◦ r
∼= B(j ⊗ f, 1) ◦ r
= B(j ⊗ f, r)
∼= X(l(j ⊗ f), 1)

thus exhibiting j ⊗ lf . �

Theorem 2.15 : Suppose M,A, j : M → PA, f : A → B are admissible. If j ⊗ f
exists and if additional admissible N, i : N → PM are such that i⊗ j exists, then
there is an associativity isomorphism

i⊗ (j ⊗ f) ∼= (i⊗ j)⊗ f.

The following theorem is what can be called “ninja Yoneda lemma”: it amounts
to the statement that tensoring with a representable acts like an evaluation.
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Theorem 2.16 [the ninja yoneda lemma]: For admissible A, f : A → B and
X, a : X → A there is an isomorphism

A(1, a)⊗ f ∼= f ◦ a
2.4. Yoneda structures: examples. Here we collect a few examples of Yoneda
structures for different choices of K :

(1) the 2-category Cat has a Yoneda structure where PA = [Aop,Set].
(2) the 2-category V-Cat of categories enriched over a base V has a Yoneda

structure where PA = [Aop,V] (you basically pretend your proof lives in
Cat = Set-Cat).

(3) the 2-category Cat(K ) of internal categories in a finitely complete K (like
for example a topos) has a Yoneda structure whose existence we sketch in
Exercise 2.24.

(4) If K has a Yoneda structure and C is a small 2-category, Psd[Cop,K ] has
an objectwise Yoneda structure.

2.5. Selected exercises. This subsection collects a few exercises; the ones labelled
with a1 symbol are to be done with patience, a comfortable spot in the library and
a cup of good coffee (warning: American coffee might be an insufficient adjuvant);
the ones labelled with a danger symbol o are meant to be boring technicalities no
one ever checks, or extremely difficult exercises.
Exercise 2.17 :Dualize the statement of Lemma 2.4 and 2.5.
Exercise 2.18 : Let

(f/g) Y

X Z

p

q
θ

g

f

be a comma object. Is it true that 〈p, θ〉 exhibits riftgfq?
Exercise 2.19 :Prove that in Cat there is an isomorphism

lanよB◦fよA
∼= lanよB

B(f, 1)
for each f : A→ B a functor between small categories, and the Yoneda embeddings
よA : A→ PA, よB : B → PB.
Exercise 2.20 :Prove axiom 3 in Cat; write explicitly the isomorphism θfg of
axiom 3.
Exercise 2.21 [1]:Prove that there is a Yoneda structure on the 2-category of
posets (objects: posets seen as categories; 1-cells: monotone functions; 2-cells: the
partial order relation on the set Pos(X,Y ) of monotone functions).

• Describe explicitly よA : A→ PA;
• Prove directly axioms 1 and 2;
• Prove axiom 3 pretending to ignore that P is blatanly a functor, i.e. prove
directly that θfg and ιA are defined and invertible (=identities). Does
axiom 4 hold?

Do this without using the description of Pos
Exercise 2.22 [o]:Prove that the isomorphism α that render P a pseudo-functor
satisfy the commutativity

P (hgf)

��

// P (gf)Ph

��

PfP (hg) // Pf(PgPh) = (PfPg)Ph
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(note that this is both boring and difficult: you cna only use the universal property).

Exercise 2.23 :Prove 2.15 and 2.16 in a similar -formal- way of 2.14.

Exercise 2.24 [o]: Let E be a finitely complete category, and K = Cat(E) the 2-
category of categories internal to E. Recall the definition of an internal profunctor
[Bor94, 8.2.1, 8.4.3]; prove that there is an equivalence

ProfE(A,B) ∼= ProfE(1, Aop ×B)
Prove that this correspondence is natural in A,B (which covariance type is it?).
We define

• an internal full subcategory of E an object S of K with an internal profunc-
tor s : 1# S inducing a fully faithful functor

K (X,S)→ ProfE(1, B)
via precomposition.
• a 1-cell f : A → B in K admissible when the profunctor correspond-
ing to (f/B) lies in the essential image of the functor K (Aop × B, S) →
ProfE(1, Aop ×B). call f∗ this (unique) 1-cell Aop ×B → S.

Prove that K has a Yoneda structure when B(f, 1) := f̂∗ : B → [Aop,S] is the
mate of f∗, and PA := [Aop,S].

What happens when E is an elementary topos and S = ΩE? What happens when
E is a Grothendieck topos and S = N is the natural number object?.
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